pypcd Documentation
Release 0.1.1

Daniel Maturana

Oct 23, 2020

Contents:

1 pypecd
L1 What? . . . e e e e e

L2 Why? . o
1.3 Howdoesit work? e e e e e e e e
1.4 Example o e e e e e
1.5 Howtoinstall. e
1.6 Howtoruntests i i i ittt e e
1.7 Using with ROS e e e e
1.8 Isit beautiful, production-ready code? e e
1.9 Whatelsecanit do? e e
110 Whatcan’titdo? L e e
LIT Isslow! . .o
1.12 Ifound a bug/Iadded a feature / I made your code cleaner
1.13 TODO . . . e e e
114 Credits« o o o o e e e e e e e e e
1.15 TIwantto congratulate you/insultyou e

DN A B PR A PR WWNRNDNDN == -

2

2 Installation
2.1 Stablerelease e e e e e e e
2.2 FromsSOUICES v v v o e e e e e e e e e e e e e e e e e 7

3

3 Usage 9

4 History 11
4.1 0.1.0(2018-03-15) . . . o o o i 11
42 0.1.1(2018-03-15) . . o v v o e e e 11

5 Indices and tables 13

CHAPTER 1

pypcd

1.1 What?

Pure Python module to read and write point clouds stored in the PCD file format, used by the Point Cloud Library.

1.2 Why?

You want to mess around with your point cloud data without writing C++ and waiting hours for the template-heavy
PCL code to compile.

You tried to get some of the Python bindings for PCL to compile and just gave up.

1.3 How does it work?

1. It parses the PCD header and loads the data (whether in ascii, binary or binary_compressed format) as
a Numpy structured array.

2. It creates an instance of the PointCloud class, containing the point cloud data as pc_data, and some con-
venience functions for I/O and metadata access. See the comments in pypcd.py for some info on the point cloud
structure.

https://travis-ci.com/DanielPollithy/pypcd
https://pypcd-clone.readthedocs.io/en/latest/?badge=latest
http://pointclouds.org/documentation/tutorials/pcd_file_format.php
http://pointclouds.org/
http://www.numpy.org

pypcd Documentation, Release 0.1.1

1.4 Example

import pypcd

also can read from file handles.

pc = pypcd.PointCloud. from_path('foo.pcd")

pc.pc_data has the data as a structured array
pc.fields, pc.count, etc have the metadata

center the x field
pc.pc_data['x'] —-= pc.pc_datal['x'].mean()

save as binary compressed
pc.save_pcd('bar.pcd', compression='binary_compressed')

1.5 How to install

You can clone this repo and use setup.py.

git clone https://github.com/DanielPollithy/pypcd
cd pypcd

make install

1.6 How to run tests

1. Install git Ifs: https://github.com/git-1fs/git-1fs/wiki/Tutorial

2. Clone this repo: git clone https://github.com/DanielPollithy/pypcd (git Ifs will down-
load the assets)

3. cd pypcd
4. Decide whether you want to test all python versions or just your
1. All: make test-all

2. Yours: make test

1.7 Using with ROS

You can also use this library with ROS sensor_msgs, but it is not a dependency. You don’t need to install this
package with catkin — using pip should be fine — but if you want to it is possible:

Steps:

you need to do this manually in this case
pip install python-1lzf

cd your_workspace/src

git clone https://github.com/dimatura/pypcd
mv setup_ros.py setup.py

(continues on next page)

2 Chapter 1. pypcd

https://github.com/git-lfs/git-lfs/wiki/Tutorial

pypcd Documentation, Release 0.1.1

(continued from previous page)

catkin build pypcd
source ../devel/setup.bash

Then you can do something like this:

import pypcd
import rospy
from sensor_msgs.msg import PointCloud2

def cb (msqg) :
pc = PointCloud. from_msg (msqg)
pc.save ('foo.pcd', compression='binary_ compressed')

maybe manipulate your pointcloud
pc.pc_data['x'] = -1

outmsg = pc.to_msg()

you'll probably need to set the header
outmsg.header = msg.header

pub.publish (outmsg)

sub = rospy.Subscriber ('incloud', PointCloud?2)

pub = rospy.Publisher ('outcloud', PointCloud2, cb)
rospy.init ('pypcd _node')

rospy.spin ()

1.8 Is it beautiful, production-ready code?

No.

1.9 What else can it do?

There’s a bunch of functionality accumulated over time, much of it hackish and untested. In no particular order,
e Supports ascii, binary and binary_compressed data. The latter requires the 1z £ module.

* Decode and encode RGB into a single f1oat32 number. If you don’t know what I’'m talking about consider
yourself lucky.

¢ Point clouds to pandas dataframes. This in particular is quite useful, since pandas is pretty powerful and makes
various operations such as merging point clouds or manipulating values easy. Conceptually, data frames are a
good match to the point cloud format, since many point clouds in reality have heterogeneous data types - e.g. x,
y and z are float fields but label is an int.

* Convert to and from ROS PointCloud2 messages. Requires the ROS sensor_msgs package with Python
bindings installed. This functionality uses code developed by Jon Binney under the BSD license, included as

numpy_pc2.py.

1.8. Is it beautiful, production-ready code? 3

https://pandas.pydata.org
http://www.ros.org

pypcd Documentation, Release 0.1.1

1.10 What can’t it do?

There’s no synchronization between the metadata fields in PointCloud and the data in pc_data. If you change
the shape of pc_data without updating the metadata fields you’ll run into trouble.

I’ve only used it for unorganized point cloud data (in PCD conventions, height=1), not organized data like what
you get from RGBD. However, some things may still work.

While padding and fields with count larger than 1 seem to work, this is a somewhat ad-hoc aspect of the PCD format,
so be careful. If you want to be safe, you’re probably better off using neither — just name each component of your field
something like FIELD_00, FIELD_O01, etc.

It also can’t run on Python 3, yet, but there’s a PR to fix this that might get pulled in the near future.

1.11 It’s slow!

Try using binary or binary_compressed; using ASCII is slow and takes up a lot of space, not to mention
possibly inaccurate if you’re not careful with how you format your floats.

1.12 | found a bug / | added a feature / | made your code cleaner

Thanks! You can submit a pull request. But honestly, I’'m not too good at keeping up with my github :(

1.13 TODO

 Better API for various operations.

* Clean up, get rid of cruft.

* Add a cli for common use cases like file type conversion.
 Better support for structured point clouds, with tests.

* Better testing.

* Better docs. More examples.

* More testing of padding

* Improve handling of multicount fields

* Better support for rgb nonsense

* Export to ply?

* Figure out if it’s acceptable to use “pointcloud” as a single word.

» Package data assets in pypi?

1.14 Credits

The code for compressed point cloud data was informed by looking at Matlab PCL.

@wkentaro for some minor changes.

4 Chapter 1. pypcd

https://www.mathworks.com/matlabcentral/fileexchange/40382-matlab-to-point-cloud-library?requestedDomain=true

pypcd Documentation, Release 0.1.1

I used cookiecutter to help with the packaging.

The code in numpy_pc2.py was developed by Jon Binney under the BSD license for ROS.

1.15 | want to congratulate you / insult you

My email is dimatura@cmu.edu.

Copyright (C) 2015-2017 Daniel Maturana

1.15. | want to congratulate you / insult you 5

https://github.com/audreyr/cookiecutter
http://www.ros.org

pypcd Documentation, Release 0.1.1

6 Chapter 1. pypcd

CHAPTER 2

Installation

2.1 Stable release

To install pypcd, run this command in your terminal:

’$ pip install pypcd

This is the preferred method to install pypcd, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for pypcd can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/dimatura/pypcd

Or download the tarball:

’$ curl -OL https://github.com/dimatura/pypcd/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/dimatura/pypcd
https://github.com/dimatura/pypcd/tarball/master

pypcd Documentation, Release 0.1.1

8 Chapter 2. Installation

CHAPTER 3

Usage

To use pyped in a project:

import pypcd

also can read from file handles.

pc = pypcd.PointCloud.from_path('foo.pcd")

pc.pc_data has the data as a structured array
pc.fields, pc.count, etc have the metadata

center the x field
pc.pc_data['x'"'] —= pc.pc_data['x'].mean()

save as binary compressed

pc.save_pcd('bar.pcd', compression='binary_ compressed’')

pypcd Documentation, Release 0.1.1

10 Chapter 3. Usage

CHAPTER 4

History

4.1 0.1.0 (2018-03-15)

* First release on PyPL

4.2 0.1.1 (2018-03-15)

* Second release on PyPlL

11

pypcd Documentation, Release 0.1.1

12 Chapter 4. History

CHAPTER B

Indices and tables

* genindex
* modindex

e search

13

	pypcd
	What?
	Why?
	How does it work?
	Example
	How to install
	How to run tests
	Using with ROS
	Is it beautiful, production-ready code?
	What else can it do?
	What can’t it do?
	It’s slow!
	I found a bug / I added a feature / I made your code cleaner
	TODO
	Credits
	I want to congratulate you / insult you

	Installation
	Stable release
	From sources

	Usage
	History
	0.1.0 (2018-03-15)
	0.1.1 (2018-03-15)

	Indices and tables

