

Welcome to pypcd’s documentation!

Contents:

	pypcd
	What?

	Why?

	How does it work?

	Example

	How to install

	Using with ROS

	Is it beautiful, production-ready code?

	What else can it do?

	What can’t it do?

	It’s slow!

	I found a bug / I added a feature / I made your code cleaner

	TODO

	Credits

	I want to congratulate you / insult you

	Installation
	Stable release

	From sources

	Usage

	History
	0.1.0 (2018-03-15)

Indices and tables

	Index

	Module Index

	Search Page

pypcd

What?

Pure Python module to read and write point clouds stored in the
PCD file format [http://pointclouds.org/documentation/tutorials/pcd_file_format.php],
used by the Point Cloud Library [http://pointclouds.org/].

Why?

You want to mess around with your point cloud data without writing C++
and waiting hours for the template-heavy PCL code to compile.

You tried to get some of the Python bindings for PCL to compile
and just gave up.

How does it work?

It parses the PCD header and loads the data (whether in ascii,
binary or binary_compressed format) as a
Numpy [http://www.numpy.org] structured array. It creates an
instance of the PointCloud
class, containing the point cloud data as pc_data, and
some convenience functions for I/O and metadata access.
See the comments in pypcd.py for some info on the point cloud
structure.

Example

import pypcd
also can read from file handles.
pc = pypcd.PointCloud.from_path('foo.pcd')
pc.pc_data has the data as a structured array
pc.fields, pc.count, etc have the metadata

center the x field
pc.pc_data['x'] -= pc.pc_data['x'].mean()

save as binary compressed
pc.save_pcd('bar.pcd', compression='binary_compressed')

How to install

pip install pypcd

That’s it! You may want to install optional dependencies such as pandas [https://pandas.pydata.org].

You can also clone this repo and use setup.py.

git clone https://github.com/dimatura/pypcd

Note that downloading data assets will
require git-lfs [https://git-lfs.github.com].

Using with ROS

You can also use this library with ROS sensor_msgs, but it is not a dependency.
You don’t need to install this package with catkin – using pip should be fine –
but if you want to it is possible:

Steps:

Then you can do something like this:

import pypcd
import rospy
from sensor_msgs.msg import PointCloud2

def cb(msg):
 pc = PointCloud.from_msg(msg)
 pc.save('foo.pcd', compression='binary_compressed')
 # maybe manipulate your pointcloud
 pc.pc_data['x'] *= -1
 outmsg = pc.to_msg()
 # you'll probably need to set the header
 outmsg.header = msg.header
 pub.publish(outmsg)

...
sub = rospy.Subscriber('incloud', PointCloud2)
pub = rospy.Publisher('outcloud', PointCloud2, cb)
rospy.init('pypcd_node')
rospy.spin()

Is it beautiful, production-ready code?

No.

What else can it do?

There’s a bunch of functionality accumulated
over time, much of it hackish and untested.
In no particular order,

	Supports ascii, binary and binary_compressed data.
The latter requires the lzf module.

	Decode and encode RGB into a single float32 number. If
you don’t know what I’m talking about consider yourself lucky.

	Point clouds to pandas [https://pandas.pydata.org] dataframes.
This in particular is quite useful,
since pandas is pretty powerful and makes various operations
such as merging point clouds or manipulating values easy.
Conceptually, data frames are a good match to the point cloud format, since
many point clouds in reality have heterogeneous data types - e.g.
x, y and z are float fields but label is an int.

	Convert to and from ROS [http://www.ros.org] PointCloud2
messages.
Requires the ROS sensor_msgs package with Python bindings
installed.
This functionality uses code developed by Jon Binney under
the BSD license, included as numpy_pc2.py.

What can’t it do?

There’s no synchronization between the metadata fields in
PointCloud
and the data in pc_data. If you change the shape of pc_data
without updating the metadata fields you’ll run into trouble.

I’ve only used it for unorganized point cloud data
(in PCD conventions, height=1), not organized
data like what you get from RGBD.
However, some things may still work.

While padding and fields with count larger
than 1 seem to work, this is a somewhat
ad-hoc aspect of the PCD format, so be careful.
If you want to be safe, you’re probably better off
using neither – just name each component
of your field something like FIELD_00, FIELD_01, etc.

It also can’t run on Python 3, yet, but there’s a PR to fix this
that might get pulled in the near future.

It’s slow!

Try using binary or binary_compressed; using
ASCII is slow and takes up a lot of space, not to
mention possibly inaccurate if you’re not careful
with how you format your floats.

I found a bug / I added a feature / I made your code cleaner

Thanks! You can submit a pull request. But honestly, I’m not too good
at keeping up with my github :(

TODO

	Better API for various operations.

	Clean up, get rid of cruft.

	Add a cli for common use cases like file type conversion.

	Better support for structured point clouds, with tests.

	Better testing.

	Better docs. More examples.

	More testing of padding

	Improve handling of multicount fields

	Better support for rgb nonsense

	Export to ply?

	Figure out if it’s acceptable to use “pointcloud” as a single word.

	Package data assets in pypi?

Credits

The code for compressed point cloud data was informed by looking at
Matlab
PCL [https://www.mathworks.com/matlabcentral/fileexchange/40382-matlab-to-point-cloud-library?requestedDomain=true].

@wkentaro for some minor changes.

I used cookiecutter [https://github.com/audreyr/cookiecutter] to
help with the packaging.

The code in numpy_pc2.py was developed by Jon Binney under
the BSD license for ROS [http://www.ros.org].

I want to congratulate you / insult you

My email is dimatura@cmu.edu.

Copyright (C) 2015-2017 Daniel Maturana

Installation

Stable release

To install pypcd, run this command in your terminal:

$ pip install pypcd

This is the preferred method to install pypcd, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pypcd can be downloaded from the Github repo [https://github.com/dimatura/pypcd].

You can either clone the public repository:

$ git clone git://github.com/dimatura/pypcd

Or download the tarball [https://github.com/dimatura/pypcd/tarball/master]:

$ curl -OL https://github.com/dimatura/pypcd/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use pypcd in a project:

import pypcd

History

0.1.0 (2018-03-15)

	First release on PyPI.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pypcd’s documentation!

 		
 pypcd

 		
 What?

 		
 Why?

 		
 How does it work?

 		
 Example

 		
 How to install

 		
 Using with ROS

 		
 Is it beautiful, production-ready code?

 		
 What else can it do?

 		
 What can’t it do?

 		
 It’s slow!

 		
 I found a bug / I added a feature / I made your code cleaner

 		
 TODO

 		
 Credits

 		
 I want to congratulate you / insult you

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 History

 		
 0.1.0 (2018-03-15)

_static/plus.png

_static/file.png

_static/minus.png

